Solving problems with **CGAL**: an example using the 2D Apollonius graph package

Menelaos I. Karavelas

http://www.cgal.org/

Geometric/Topological Software Minisymposium

CG-Week, Chapel Hill, NC, June 19th, 2012
1 Brief CGAL intro

2 2D Triangulations in CGAL

3 2D Apollonius graphs

4 Disk intersection subgraph

5 Looking ahead
The CGAL project

- Open source project
- Aims at providing “easy access to efficient and reliable geometric algorithms in the form of a C++ library”
- Development started in 1995 (two ESPRIT LTR European projects)
- Open source as of November 2003 (v3.0)
- LGPL/GPL v3+ as of March 2012 (v4.0)
- More than 500K lines of C++ code
The (current) world of CGAL in a glance

- 12 Institutes/Universities/Companies have participated in the development of CGAL
 - Europe, Israel, U.S.A.
 - 4 Institutes
 - 6 Universities
 - 2 Companies

- GeometryFactory (created in 2003): sells commercial licenses, provides support, develops customized solutions

- Open Source Project run by the *Editorial Board*
 - Currently 13 editors
 - Responsible for guiding the development of the library, developers, and the user community.
The project’s structure

- Human resources categories
 - Editorial Board
 - Developers
 - Users

- Support for several platforms
 (g++ on Linux/MacOS/Windows, VC++ on Windows)

- About 20 active developers

- 3,500 pages manual

- 6-month release cycle
The project’s structure (contd.)

- Contributors maintain their identity
- Editorial Board manages reviews of submissions
- Candidate packages are included in daily test suites
- svn is used as version control system
- Developer support:
 - manual for developers
 - dedicated mailing list
 - wiki
 - meetings (1-week long) once or twice per year
The design of the library

- Major goals
 1. Robust construction of geometric entities
 2. Efficiency
 3. Genericity
The design of the library

- **Major goals**
 1. Robust construction of geometric entities
 2. Efficiency
 3. Genericity

- **Major design ideas:**
 - Separation between algorithms/data structures and predicates
 - Predicates/Constructions are encapsulated in *kernels* and *traits classes*
 - Predicate evaluation: Exact Geometric Computation (EGC) Paradigm \leadsto Robustness
 - Arithmetic/geometric filtering techniques (interval arithmetic) \leadsto Efficiency
 - Generic programming via templates & concept/model development paradigm \leadsto Genericity; at least one model per concept in the library
Parts of the library

1. Arithmetic & algebra layer: framework for utilizing number types, polynomials, support for kernels (esp. for non-linear objects)
2. Kernel concepts: 2D, 3D, dD kernels
3. Support library: STL extensions, interface with BGL, geometric generators
4. Packages (bulk of the library):
 - arrangements, convex hulls, triangulations, Voronoi diagrams, meshes
 - geometric optimization, geometry processing, spatial searching
 - support for Kinetic Data Structures, operations on cell complexes, operations on polyhedra
2D Triangulations overview

Support for 2D triangulations in CGAL:

- Basic triangulations
- Delaunay triangulations
- Regular triangulations
- Constrained triangulations
- Constrained Delaunay triangulations
2D Triangulations overview

Support for 2D triangulations in CGAL:
- Basic triangulations
- Delaunay triangulations
- Regular triangulations
- Constrained triangulations
- Constrained Delaunay triangulations

Built on top of 2D triangulations:
- Conforming triangulations & meshes
- Alpha shapes
- Apollonius graphs
- Segment Delaunay graphs
The software design of 2D triangulations

- **Triangulation**: Geometry, User interface
- **Triangulation data structure**: Container, Combinatorial operations
- **Vertex**, **Face**
- **Geometric traits**: Container, Combinatorial operations
- **User Vbase**, **User Fbase**
- **derivation**, **template parameter**
The 2D triangulation data structure

- Can represent any orientable triangulated surface
- Has containers for faces and vertices
- 3 pointers to defining vertices and 3 pointers to neighboring faces per face
- 1 pointer to incident face per vertex
- Faces and vertices are accessed via handles
- Edges are represented as pair of a face and an index
The user can plug-in own vertex and face classes

The TDS recovers their types via the *rebind* mechanism:

```cpp
template<class Vb = Triangulation_ds_vertex_base_2<> >
class MyVertex : public Vb
{
    template <typename TDS2>
    struct Rebind_TDS {
        typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
        typedef MyVertex<Vb2> Other;
    };
};
```

```cpp
template < class Vb = Triangulation_ds_vertex_base_2<>,
                   class Fb = Triangulation_ds_face_base_2<> >
class Triangulation_data_structure_2
{
    typedef Triangulation_data_structure_2<Vb,Fb> Tds;

    typedef typename Vb::template Rebind_TDS<Tds>::Other Vertex;
    typedef typename Fb::template Rebind_TDS<Tds>::Other Face;
};
```
From the TDS to a triangulation

- TDS is of entirely combinatorial nature
- Geometry is added at a higher level
 - The geometric traits/kernel provides the geometrical information
 - A fictitious site is added at infinity
Access to features - All vertices iterator

- Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin();
     it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All vertices iterator

- Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin();
    it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All vertices iterator

- Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin(); it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Iterator to all vertices

Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin();
 it != tr.all_vertices_end(); ++it)
{
 Tr::Vertex_handle v(it);
 //...do what needs to be done with v
}
Access to features - All vertices iterator

Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin(); it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All vertices iterator

Iterator to all vertices

Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin();
 it != tr.all_vertices_end(); ++it)
{
 Tr::Vertex_handle v(it);
 //...do what needs to be done with v
}
Access to features - All vertices iterator

- Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin(); it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All vertices iterator

Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin(); it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All vertices iterator

- Iterator to all vertices

```cpp
Tr::All_vertices_iterator it;
for (it = tr.all_vertices_begin();
     it != tr.all_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - Finite vertices iterator

Iterator to finite vertices

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
    it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Iterator to finite vertices

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
    it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Iterator to finite vertices

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
   it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - Finite vertices iterator

- Iterator to finite vertices

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
     it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - Finite vertices iterator

```
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
    it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - Finite vertices iterator

- **Iterator to finite vertices**

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
    it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - Finite vertices iterator

- Iterator to finite vertices

```cpp
Tr::Finite_vertices_iterator it;
for (it = tr.finite_vertices_begin();
     it != tr.finite_vertices_end(); ++it)
{
    Tr::Vertex_handle v(it);
    //...do what needs to be done with v
}
```
Access to features - All faces iterator

Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- **Iterator to all faces**

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- **Iterator to all faces**

  ```cpp
  Tr::All_faces_iterator it;
  for (it = tr.all_faces_begin();
       it != tr.all_faces_end(); ++it)
  {
    Tr::Face_handle f(it);
    //...do what needs to be done with f
  }
  ```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
    it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin(); it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
    it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- **Iterator to all faces**

  ```cpp
  Tr::All_faces_iterator it;
  for (it = tr.all_faces_begin();
       it != tr.all_faces_end(); ++it)
  {
    Tr::Face_handle f(it);
    //...do what needs to be done with f
  }
  ```
Access to features - All faces iterator

Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
    it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - All faces iterator

- Iterator to all faces

```cpp
Tr::All_faces_iterator it;
for (it = tr.all_faces_begin();
     it != tr.all_faces_end(); ++it)
{
    Tr::Face_handle f(it);
    //...do what needs to be done with f
}
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
} while (vc != vc_start);
```

Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
} while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
}while (vc != vc_start);
```

Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
}while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
} while (vc != vc_start);
```

Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
} while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

\[
\begin{align*}
\text{Tr} &: \text{Vertex_circulator} \ vc_start = \\
& \quad \text{tr.incident_vertices}(u); \\
\text{Tr} &: \text{Vertex_circulator} \ vc = vc_start; \\
\text{do} \ {\{ \\
& \quad \text{Tr} &: \text{Vertex_handle} \ v(vc); \\
& \quad \text{//...do what needs to be done with v} \\
& \quad \text{++vc; } \\
\text{\}} \ \text{while} \ (vc \neq vc_start);
\end{align*}
\]
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
}while (vc != vc_start);
```

Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
}while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
} while (vc != vc_start);
```

- Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
} while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
} while (vc != vc_start);
```

- Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
} while (vc != vc_start);
```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

  ```cpp
  Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
  Tr::Vertex_circulator vc = vc_start;
  do {
      Tr::Vertex_handle v(vc);
      //...do what needs to be done with v
      ++vc;
  } while (vc != vc_start);
  ```

- Can also circulate clockwise:

  ```cpp
  Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
  Tr::Vertex_circulator vc = vc_start;
  do {
      Tr::Vertex_handle v(vc);
      //...do what needs to be done with v
      --vc;
  } while (vc != vc_start);
  ```
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

\[
\text{Tr}::\text{Vertex} _ \text{circulator} \ vc _ \text{start} = \text{tr} . \text{incident} _ \text{vertices} (u) ; \\
\text{Tr}::\text{Vertex} _ \text{circulator} \ vc = vc _ \text{start} ; \\
do \{ \\
\text{Tr}::\text{Vertex} _ \text{handle} \ v(vc) ; \\
//...do \ what \ needs \ to \ be \ done \ with \ v \\
++vc ; \\
\} \ \text{while} \ (vc \neq vc _ \text{start}) ;
\]

- Can also circulate clockwise:

\[
\text{Tr}::\text{Vertex} _ \text{circulator} \ vc _ \text{start} = \text{tr} . \text{incident} _ \text{vertices} (u) ; \\
\text{Tr}::\text{Vertex} _ \text{circulator} \ vc = vc _ \text{start} ; \\
do \{ \\
\text{Tr}::\text{Vertex} _ \text{handle} \ v(vc) ; \\
//...do \ what \ needs \ to \ be \ done \ with \ v \\
--vc ; \\
\} \ \text{while} \ (vc \neq vc _ \text{start}) ;
\]
Access to features - Vertex circulator

- Circulator for vertices neighboring a vertex

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    ++vc;
} while (vc != vc_start);
```

- Can also circulate clockwise:

```cpp
Tr::Vertex_circulator vc_start = tr.incident_vertices(u);
Tr::Vertex_circulator vc = vc_start;
do {
    Tr::Vertex_handle v(vc);
    //...do what needs to be done with v
    --vc;
} while (vc != vc_start);
```
The 2D Apollonius diagram
(aka additively-weighted Voronoi diagram)

- **Input:** set of n weighted sites $S_i = (c_i, r_i)$ (circles with center c_i and radius r_i)
- **Distance:** $\delta(x, S_i) = \|x - c_i\|_2 - r_i$
- **Output:** Voronoi diagram (defined the usual way)
- Three sites can have up to two Voronoi circles
- Bisectors are [branches of] hyperbolas
- A site can have *empty* Voronoi region; such a site is called *hidden*
- The 1-skeleton may have multiple connected components (that are connected at infinity)
The 2D Apollonius diagram
(aka additively-weighted Voronoi diagram)

- Input: set of n weighted sites
 $S_i = (c_i, r_i)$ (circles with center c_i
 and radius r_i)
- Distance: $\delta(x, S_i) = \|x - c_i\|_2 - r_i$
- Output: Voronoi diagram (defined the usual way)
- Three sites can have up to two Voronoi circles
- Bisectors are [branches of] hyperbolas
- A site can have empty Voronoi region; such a site is called hidden
- The 1-skeleton may have multiple connected components (that are connected at infinity)
The Apollonius\textunderscore graph_2 package

- The algorithm is dynamic
- Dual of the Voronoi diagram (a.k.a. Apollonius graph) is computed and stored; actually the compactified version
- The Apollonius graph (up to degeneracies) is planar and has triangular faces
- Two triangles can have two edges in common
- Two sites can be connected with multiple edges
- A site can appear multiple times on the convex hull
The dynamic algorithm

Insertion: to insert the new site $S = (c, r)$

- We perform point-location of c in the existing Voronoi diagram
- We determine whether S is hidden or not
- If S is not hidden, find the portion of the Voronoi diagram to be destroyed (conflict region)
- Destroy the conflict region and create the Voronoi region of S.
The dynamic algorithm

Insertion: to insert the new site $S = (c, r)$

- We perform point-location of c in the existing Voronoi diagram
- We determine whether S is hidden or not
- If S is not hidden, find the portion of the Voronoi diagram to be destroyed (conflict region)
- Destroy the conflict region and create the Voronoi region of S.

Deletion: to delete an existing site $S = (c, r)$

- Construct the “small” Voronoi diagram of the neighbors of S
- Destroy the star of S in the “big” Voronoi diagram
- Use the “small” diagram to fill-in the hole just created
- Finally, insert in the new diagram the sites than were hidden by S
The functionality of the package

- Basically the same with triangulations (+ some differences):
 - Provides iterators for all/finite vertices/edges/faces
 - Provides circulators for neighboring vertices
 - neighboring vertices may be reported multiple times
 - Provides circulators for edges/faces incident to a vertex
 - Provides access to hidden/visible sites (via iterators)
 - Supports nearest-neighbor queries for points (these are point-location queries in the Apollonius diagram)
The functionality of the package

- Basically the same with triangulations (+ some differences):
 - ✔ Provides iterators for all/finite vertices/edges/faces
 - ✔ Provides circulators for neighboring vertices
 - • neighboring vertices may be reported multiple times
 - ✔ Provides circulators for edges/faces incident to a vertex
 - ✔ Provides access to hidden/visible sites (via iterators)
 - ✔ Supports nearest-neighbor queries for points (these are point-location queries in the Apollonius diagram)
 - ✗ Does not support point-location queries on the Apollonius graph
 - • this is possible in basic, Delaunay and regular triangulations
 - ✗ Degeneracies are handled via an implicit perturbation scheme that depends on order of insertion
 - ✔ but we are working on a canonical perturbation scheme
The functionality of the package

- Basically the same with triangulations (+ some differences):
 - Provides iterators for all/finite vertices/edges/faces
 - Provides circulators for neighboring vertices
 - neighboring vertices may be reported multiple times
 - Provides circulators for edges/faces incident to a vertex
 - Provides access to hidden/visible sites (via iterators)
 - Supports nearest-neighbor queries for points (these are point-location queries in the Apollonius diagram)
 - Does not support point-location queries on the Apollonius graph
 - this is possible in basic, Delaunay and regular triangulations
 - Degeneracies are handled via an implicit perturbation scheme that depends on order of insertion
 - but we are working on a canonical perturbation scheme
 - In the incremental-only scenario, it is possible to save storage by not keeping track of the hidden sites
 - done at the level of the vertex base class
The design of the package

Follows the same design with triangulations (+ some differences again):

- `Apollonius_graph_2` class is templated by the traits and the data structure, which must be models of corresponding concepts.
The design of the package

Follows the same design with triangulations (+ some differences again):

- `Apollonius_graph_2` class is templated by the traits and the data structure, which must be models of corresponding concepts.
- The data structure concept is the same as for triangulations.
 - However, we need to use a vertex base that is different from that for triangulations.
The design of the package

Follows the same design with triangulations (+ some differences again):

- Apollonius_graph_2 class is templated by the traits and the data structure, which must be models of corresponding concepts
- The data structure concept is the same as for triangulations
 - however, we need to use a vertex base that is different from that for triangulations
- The traits concept lists requirements for predicates and constructions
 - unlike the case of triangulations, the CGAL 2D kernels are not models: more predicates and constructions are needed
The design of the package

Follows the same design with triangulations (+ some differences again):

- **Apollonius_graph_2** class is templated by the traits and the data structure, which much be models of corresponding concepts
- The data structure concept is the same as for triangulations
 - however, we need to use a vertex base that is different from that for triangulations
- The traits concept lists requirements for predicates and constructions
 - unlike the case of triangulations, the CGAL 2D kernels are not models: more predicates and constructions are needed
- There is a hierarchical version of the **Apollonius_graph_2** class (analogous to the Delaunay hierarchy), which can speed up the computation of the diagram for large enough data sets.
The vertex base class – Part 1

```cpp
template <class Gt, bool StoreHidden = true, class Vb = Triangulation_ds_vertex_base_2>
class Apollonius_graph_vertex_base_2
    : public Vb
{
private:
    typedef typename Vb::Triangulation_data_structure AGDS;

public:
    // TYPES
    //------
    typedef Gt Geom_traits;
    typedef Vb Base;
    typedef typename Gt::Site_2 Site_2;
    typedef AGDS Apollonius_graph_data_structure_2;
    typedef typename AGDS::Face_handle Face_handle;
    typedef typename AGDS::Vertex_handle Vertex_handle;

    enum {Store_hidden = StoreHidden};

    template <typename AGDS2>
    struct Rebind_TDS {
        typedef typename Vb::template Rebind_TDS<AGDS2>::Other Vb2;
        typedef Apollonius_graph_vertex_base_2<Gt, StoreHidden, Vb2> Other;
    };

    private:
    // local types
    typedef std::list<Site_2> Container;
```
The vertex base class – Part 2

```cpp
public:
   // TYPES (continued)
   //------------------
   typedef typename Container::iterator Hidden_sites_iterator;

public:
   // CREATION
   //---------
   Apollonius_graph_vertex_base_2() : Vb() {}
   Apollonius_graph_vertex_base_2(const Site_2& p) : Vb(), _p(p) {}
   Apollonius_graph_vertex_base_2(const Site_2& p, Face_handle f) : Vb(f), _p(p) {}

~Apollonius_graph_vertex_base_2() { clear_hidden_sites_container(); }

   // ACCESS METHODS
   //---------------
   const Site_2& site() const { return _p; }
   Site_2& site() { return _p; }
   Face_handle face() const { return Vb::face(); }
   std::size_t number_of_hidden_sites() const { return hidden_site_list.size(); }
   Hidden_sites_iterator hidden_sites_begin() { return hidden_site_list.begin(); }
   Hidden_sites_iterator hidden_sites_end() { return hidden_site_list.end(); }
```
The vertex base class – Part 3

public:
 // SETTING AND UNSETTING
 void set_site(const Site_2& p) { _p = p; }
 void add_hidden_site(const Site_2& p)
 {
 if (StoreHidden) {
 hidden_site_list.push_back(p);
 }
 }
 void clear_hidden_sites_container()
 {
 hidden_site_list.clear();
 }

public:
 // VALIDITY CHECK
 bool is_valid(bool verbose = false, int level = 0) const {
 return Vb::is_valid(verbose, level);
 }

private:
 // class variables
 Container hidden_site_list;
 Site_2 _p;
Our "toy" problem

Suppose we are given a set \mathcal{D} of n disks D_1, \ldots, D_n, we want to build a data structure that supports (efficiently) the following query:

Query

Given two disks D_i and D_j in \mathcal{D}, do they belong to the same connected component of the union $\bigcup_{i=1}^{n} D_i$?
Our “toy” problem

Suppose we are given a set D of n disks D_1, \ldots, D_n, we want to build a data structure that supports (efficiently) the following query:

Let I_D be the intersection graph of D.

Query

Given two disks D_i and D_j in D, do they belong to the same connected component of I_D?
Our “toy” problem

Suppose we are given a set D of n disks D_1, \ldots, D_n, we want to build a data structure that supports (efficiently) the following query:

Let I_D be the intersection graph of D.

Query

Given two disks D_i and D_j in D, do they belong to the same connected component of I_D?

- The solution that will be presented today is based on the Apollonius_graph_2 CGAL package.
- We will assume that there are no hidden sites.
- We will describe a static solution (i.e., all sites are known in advance).
- The query time will be $O(1)$.
Our “toy” solution

- Let $AG(D)$ denote the Apollonius graph of D.

There exists a subgraph G of $AG(D)$ having the same connected components as I_D.

- In fact, we will compute G to be a spanning forest F_D of G.
Our “toy” solution

- Let $AG(D)$ denote the Apollonius graph of D.
- There exists a subgraph G of $AG(D)$ having the same connected components as I_D.
- in fact, we will compute G to be a spanning forest F_D of G.

Let $AG(D)$ denote the Apollonius graph of D.

There exists a subgraph G of $AG(D)$ having the same connected components as I_D.

in fact, we will compute G to be a spanning forest F_D of G.

Our “toy” solution

- Let $AG(D)$ denote the Apollonius graph of D.

- There exists a subgraph G of $AG(D)$ having the same connected components as I_D.
 - in fact, we will compute G to be a spanning forest F_D of G.
Let \(AG(D) \) denote the Apollonius graph of \(D \).

There exists a subgraph \(G \) of \(AG(D) \) having the same connected components as \(I_D \).

- in fact, we will compute \(G \) to be a spanning forest \(F_D \) of \(G \).
Our “toy” solution

Let $AG(D)$ denote the Apollonius graph of D.

There exists a subgraph G of $AG(D)$ having the same connected components as I_D.

In fact, we will compute G to be a spanning forest F_D of G.
Our “toy” solution

- Let $AG(D)$ denote the Apollonius graph of D.
- There exists a subgraph G of $AG(D)$ having the same connected components as I_D.
- In fact, we will compute G to be a spanning forest F_D of G.
Our “toy” solution

- Let $AG(D)$ denote the Apollonius graph of D.

- There exists a subgraph G of $AG(D)$ having the same connected components as I_D.
 - in fact, we will compute G to be a spanning forest F_D of G.

- We will compute F_D by performing a DFS-like search on $AG(D)$:
 - for each non-visited disk v, we will find, among v’s neighbors in $AG(D)$, all disks with which v intersects; call this set I_v
 - we will mark v as visited
 - we will proceed recursively with all disks in I_v
Implementing our solution

💡 We will implement the forest F_D in-place. To do this we will:

1. Modify the vertex base class of $AG(D)$ by adding fields for storing the in-place forest (as a set of rooted trees), the root of the tree that the vertex belongs to (representing vertex).
2. Create a new traits class with the additional predicates needed for computing F_D.
3. Implement the `Disk_intersection_subgraph_2` class that will support the same-connected-component queries.
4. Provide access to the connected components of F_D via iterators.
Implementing our solution

💡 We will implement the forest F_D in-place. To do this we will:

1. Modify the vertex base class of $AG(D)$ by adding fields for storing
 1. the in-place forest (as a set of rooted trees)
 2. the root of the tree that the vertex belongs to (rep. vertex)
Implementing our solution

💡 We will implement the forest F_D in-place. To do this we will:

1. Modify the vertex base class of $AG(D)$ by adding fields for storing
 ① the in-place forest (as a set of rooted trees)
 ② the root of the tree that the vertex belongs to (rep. vertex)

2. Create a new traits class with the additional predicates needed for computing F_D
Implementing our solution

💡 We will implement the forest \mathcal{F}_D in-place. To do this we will:

1. Modify the vertex base class of $\mathcal{A}G(D)$ by adding fields for storing
 ① the in-place forest (as a set of rooted trees)
 ② the root of the tree that the vertex belongs to (rep. vertex)

2. Create a new traits class with the additional predicates needed for computing \mathcal{F}_D

3. Implement the `Disk_intersection_subgraph_2` class that will
 ① compute \mathcal{F}_D
 ② support the same-connected-component queries
 ③ provide access to the connected components of \mathcal{F}_D via iterators
The new vertex base class

- Must be a model of the ApolloniusGraphVertexBase_2 concept
- Additional fields:
 - rep_vertex (the representative vertex)
 - parent (the parent vertex in the tree)
 - children (the children in the tree)
- The children will be implemented as
 std::set<Vertex_handle, Vertex_less>
 - Vertex_less is the comparator functor used in the std::set
The `Disk_intersection_subgraph_vertex_base_2` class – Part 1

```cpp
template<class Gt, bool StoreHidden = false, class Vb = Apollonius_graph_vertex_base_2<Gt,StoreHidden> >
class Disk_intersection_subgraph_vertex_base_2
    : public Vb
{
private:
    typedef Vb Base;

public:
    // public types (required by the ApolloniusGraphVertexBase_2 concept)
    typedef typename Base::Geom_traits Geom_traits;
    typedef typename Base::Site_2 Site_2;

    typedef typename Base::Apollonius_graph_data_structure_2
                     Apollonius_graph_data_structure_2;

    typedef typename Base::Face_handle Face_handle;
    typedef typename Base::Vertex_handle Vertex_handle;

    static const bool Store_hidden = StoreHidden;

    // the rebind mechanism
    template < typename AGDS2 >
    struct Rebind_TDS {
        typedef typename Vb::template Rebind_TDS<AGDS2>::Other Vb2;
        typedef Disk_intersection_subgraph_vertex_base_2<Gt,Store_hidden,Vb2> Other;
    };
```
The Disk_intersection_subgraph_vertex_base_2 class – Part 2

private:
 // the comparator functor that will be used in the std::set;
 // it uses the Compare_site_2 which is a new predicate (it is not
 // provided by the model of the ApolloniusGraphTraits_2 concept
 struct Vertex_less
 {
 typedef typename Geom_traits::Compare_site_2 Compare_site_2;

 bool operator()(const Vertex_handle& v1,
 const Vertex_handle& v2) const
 {
 return Compare_site_2()(v1->site(), v2->site()) == SMALLER;
 }
 };

 // type for the set of children nodes
 typedef std::set<Vertex_handle, Vertex_less> Children_set;

 // the representative vertex
 Vertex_handle rep_vertex;
 // the parent vertex
 Vertex_handle v_parent;
 // the children
 Children_set children;

public:
 // type for the iterator on the children
 typedef typename Children_set::const_iterator Children_iterator;
The `Disk_intersection_subgraph_vertex_base_2` class – Part 3

```cpp
public:
  // constructors
  Disk_intersection_subgraph_vertex_base_2() : Base(), rep_vertex(), v_parent() {}
  Disk_intersection_subgraph_vertex_base_2(const Site_2& p) : Base(p), rep_vertex(), v_parent() {}
  Disk_intersection_subgraph_vertex_base_2(const Site_2& p, Face_handle f)
    : Base(p, f), rep_vertex(), v_parent() {}

  // set/get the representative vertex
  inline void representative(Vertex_handle rep) { rep_vertex = rep; }
  inline Vertex_handle representative() const { return rep_vertex; }

  // set/get the parent vertex
  inline void parent(Vertex_handle vp) { v_parent = vp; }
  inline Vertex_handle parent() const { return v_parent; }

  // add a new child
  inline void add_child(Vertex_handle n) { children.insert(n); }

  // test if v is a child of *this vertex
  inline bool has_child(Vertex_handle v) const { return children.find(v) != children.end(); }

  // iterators for children
  inline Children_iterator children_begin() const { return children.begin(); }
  inline Children_iterator children_end() const { return children.end(); }

  // the number of children
  inline typename Children_set::size_type number_of_children() const { return children.size(); }

  // clear the container of the child nodes
  inline void clear_children_container() { children.clear(); }
};
```
The additional predicates

Two additional predicates required:

1. A functor that compares two disks (returns a `Comparison_result`); must produce total order of \(D \)
 - this predicate is somehow optional since it depends on our choice of data structure for the `Children_set` in the vertex base class

2. A functor that returns `true` if two disks intersect and `false` otherwise
 - given two disks \(D_i = ((x_i, y_i), r_i), i = 1, 2 \), this predicate amounts to computing the sign of quantity:
 \[
 (x_1 - x_2)^2 - (y_1 - y_2)^2 - (r_1 - r_2)^2
 \]
The disk comparator functor

Really simple, and based on existing predicates

- Gt stands for the disk intersection subgraph traits class

```cpp
template<class Gt>
class Compare_site_2
{
public:
    typedef typename Gt::Comparison_result Comparison_result;
    typedef typename Gt::Site_2 Site_2;

protected:
    typedef typename Gt::Compare_x_2 Compare_x_2;
    typedef typename Gt::Compare_y_2 Compare_y_2;
    typedef typename Gt::Compare_weight_2 Compare_weight_2;

public:
    typedef Site_2 argument_type;
    typedef Comparison_result result_type;

    Comparison_result operator()(const Site_2& p, const Site_2& q) const
    {
        Comparison_result cr_w = Compare_weight_2()(p, q);
        if ( cr_w != EQUAL ) { return cr_w; }

        Comparison_result cr_x = Compare_x_2()(p, q);
        if ( cr_x != EQUAL ) { return cr_x; }

        return Compare_y_2()(p, q);
    }
};
```
The disk intersection predicate

Again simple; will use as much kernel functionality as possible

- again Gt stands for the disk intersection subgraph traits class

```cpp
template<class Gt>
class Do_intersect_2
{
protected:
  typedef Gt Geom_traits;
  typedef typename Geom_traits::Site_2 Site_2;

  // functor, taken from the CGAL kernel, that computes the squared
  // distance of two 2D points
  typedef typename Geom_traits::Kernel::Compute_squared_distance_2 Distance_2;

public:
  typedef bool result_type;
  typedef Site_2 argument_type;

  // returns true if the (closures of the) disks s and t have
  // non-empty intersection, false otherwise
  inline
  bool operator()(const Site_2& s, const Site_2& t) const
  {
    return CGAL::compare( CGAL::square(s.weight() + t.weight()),
                          Distance_2()(s.point(), t.point())
                          ) != SMALLER;
  }
};
```
Putting the traits together

K is a model of the CGAL 2D kernel concept

template<class K>
class Disk_intersection_subgraph_traits_2 : public Apollonius_graph_traits_2<K> {
 typedef Disk_intersection_subgraph_traits_2<K> Self;

protected:
 typedef Apollonius_graph_traits_2<K> Base;

public:
 typedef K Kernel;
 typedef typename Kernel::Comparison_result Comparison_result;
 typedef typename Base::Site_2 Site_2;

 // types for the two new predicates
 typedef CGAL::Do_intersect_2<Self> Do_intersect_2;
 typedef CGAL::Compare_site_2<Self> Compare_site_2;

 // access to the two new predicates
 inline Compare_site_2
 compare_site_2_object() const { return Compare_site_2(); }
 inline Do_intersect_2
 do_intersect_2_object() const { return Do_intersect_2(); }
};
Implementing the Disk_intersection_subgraph_2 class

- Will derive from the Apollonius_graph_2 class in a protected manner
- Instantiate the TDS with our own vertex base class
- Use our augmented traits

```cpp
template<class Gt>
class Disk_intersection_subgraph_2
    : protected Apollonius_graph_2<Gt, Triangulation_data_structure_2<
        Disk_intersection_subgraph_vertex_base_2<Gt,false>, Triangulation_face_base_2<Gt> > >
{
    typedef Apollonius_graph_2<Gt, Triangulation_data_structure_2<
        Disk_intersection_subgraph_vertex_base_2<Gt,false>, Triangulation_face_base_2<Gt> > > Base;

public:
    typedef typename Base::Finite_vertices_iterator Vertex_iterator;
    typedef typename Base::Vertex_circulator Vertex_circulator;
    typedef typename Base::Vertex_handle Vertex_handle;
    typedef typename Base::Geom_traits Geom_traits;
    typedef typename Base::size_type size_type;
    typedef typename Base::Site_2 Site_2;
    typedef typename Base::Point_2 Point_2;

protected:
    typedef std::queue<Vertex_handle> Queue;
```
The main part of the class implementation

protected:
void compute_intersection_subgraph(); // to be implemented
void compute_intersection_subgraph(Queue& q, Vertex_handle v_rep); // to be implemented

size_type n_components; // the number of connected components

public:
// constructors
Disk_intersection_subgraph_2(const Geom_traits& gt = Geom_traits()) : Base(gt) {}

template<class Input_iterator>
Disk_intersection_subgraph_2(Input_iterator first, Input_iterator beyond,
const Geom_traits& gt = Geom_traits()) : Base(first, beyond, gt)
{ compute_intersection_subgraph(); }

inline bool in_same_connected_component(Vertex_handle v1, Vertex_handle v2) const {
 return v1->representative() == v2->representative();
}

bool is_valid(bool verbose = false, int level = 1) const
{
 for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) {
 if (vit->representative() == Vertex_handle()) { return false; }
 for (Children_iterator it = vit->children_begin(); it != vit->children_end(); ++it) {
 if ((*it)->parent() != Vertex_handle(vit)) { return false; }
 if (!vit->has_child(*it)) { return false; }
 }
 }
 return Base::is_valid(verbose, level);
}
The various iterators

typedef typename Base::Triangulation_data_structure::Vertex::Children_iterator Children_iterator;

inline Vertex_iterator vertices_begin() const { return Base::finite_vertices_begin(); }
inline Vertex_iterator vertices_end() const { return Base::finite_vertices_end(); }

typedef Connected_comp_vertex_iterator<Vertex_iterator, Vertex_handle> Connected_component_vertex_iterator;

typedef Connected_comp_iterator<Vertex_iterator, Vertex_handle> Connected_component_iterator;

typedef Connected_component_iterator Connected_component_handle;

inline Connected_component_iterator connected_components_begin() const {
 return Connected_component_iterator(vertices_end(), vertices_begin());
}

inline Connected_component_iterator connected_components_end() const {
 return Connected_component_iterator(vertices_end());
}

inline Connected_component_vertex_iterator vertices_begin(Connected_component_handle ch) const {
 return Connected_component_vertex_iterator(vertices_end(), ch->representative(), vertices_begin());
}

inline Connected_component_vertex_iterator vertices_end(Connected_component_handle ch) const {
 return Connected_component_vertex_iterator(vertices_end(), ch->representative());
}
Counting vertices and connected components

```cpp
inline size_type number_of_connected_components() const { return n_components; }

inline size_type number_of_connected_component_vertices(Connected_component_handle ch) const {
    size_type nv = number_of_vertices();
    if (nv < 2) { return nv; }

    Queue q;
    q.push(ch->representative());

    size_type n(0);
    while (!q.empty()) {
        Vertex_handle v = q.front();
        q.pop();

        ++n;
        for (Children_iterator it = v->children_begin(); it != v->children_end(); ++it) {
            q.push(*it);
        }
    }

    return n;
}

inline size_type number_of_vertices() const { return Base::number_of_vertices(); }
```

Time to do the “dirty” job

- Files from the web site if you have not downloaded them yet
- CGAL is already setup in the VirtualBox image
- Can compile the files right away (demo and examples directories)
- What to do:
 - Open the file `Disk_intersection_subgraph_2.h` (include/CGAL directory) and fill-in the code for the two `compute_intersection_subgraph()` methods.
- Will be walking around to help
Going one step further

- The traits class presented assumes an exact predicates/exact constructions CGAL kernel (due to the computations in the Do_intersect_2 predicate)

- A traits class that supports arithmetic filtering should also be implemented
 - easy and straightforward to do; it is a purely technical issue
Going one step further

✗ The traits class presented assumes an exact predicates/exact constructions CGAL kernel (due to the computations in the `Do_intersect_2` predicate)

✓ A traits class that supports arithmetic filtering should also be implemented
 - easy and straightforward to do; it is a purely technical issue

✓ The implementation could easily be made incremental: use the Union-Find data structure to compute the spanning forest
 - there is an implementation of Union-Find in the Support Library of CGAL
Going one step further

× The traits class presented assumes an exact predicates/exact constructions CGAL kernel (due to the computations in the Do_intersect_2 predicate)

✓ A traits class that supports arithmetic filtering should also be implemented
 ● easy and straightforward to do; it is a purely technical issue

✓ The implementation could easily be made incremental: use the Union-Find data structure to compute the spanning forest
 ● there is an implementation of Union-Find in the Support Library of CGAL

This is it for today. Thank you